CRE 3 - Modulus | Algebra - Inequalities & Modulus
Join our Telegram Channel for CAT/MBA Preparation.
Direction for next 4 questions:
Find the range of values of x which satisfies the following inequalities.
|2x - 4| ≤ 6
- (a)
x ∈ (-∞, -1] ∪ [5, ∞)
- (b)
-5 ≤ x ≤ 5
- (c)
-1 ≤ x ≤ 5
- (d)
None of these
Answer: Option C
Workspace:
|3x - 5| ≥ 3
- (a)
x ∈ (-∞, 2/3] ∪ [8/3, ∞)
- (b)
2/3 ≥ x ≥ 8/3
- (c)
2/3 < x < 8/3
- (d)
None of these
Answer: Option B
Workspace:
||x - 1| - 2| > 3
- (a)
x ∈ (-∞, -4) ∪ (6, ∞)
- (b)
x ∈ (-4, 6)
- (c)
x ∈ (-∞, -5] ∪ [7, ∞)
- (d)
None of these
Answer: Option A
Workspace:
|2x + 4| ≥ |3x - 9|
- (a)
x ∈ (0, 14)
- (b)
x ∈ (-∞, 0], [15, ∞)
- (c)
x ∈ [1, 13]
- (d)
None of these
Answer: Option C
Workspace:
f(x) = |3x + 7| + 16. Find the value of x for which f(x) is minimum.
- (a)
0
- (b)
-3
- (c)
16
- (d)
-7/3
Answer: Option D
Workspace:
f(x) = |x - 1| + |x + 1| + |x + 3|. Find the least possible value of f(x).
- (a)
-1
- (b)
0
- (c)
2
- (d)
4
Answer: Option D
Workspace:
Feedback
Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.