Trigonometry - SSC
From the masthead of a ship of 180 m height to boat, a depression angle of 60 degrees formed. Find out the distance of ship to boat( in m).
- A.
360
- B.
60√3
- C.
180√3
- D.
180
Answer: Option B
Explanation :
Workspace:
If A = 30°, what is the value of
- A.
- B.
- C.
- D.
Answer: Option B
Explanation :
Workspace:
If (2 cos A + 1) (2 cos A - 1) = 0, 0° < A ≤ 90°
- A.
90°
- B.
45°
- C.
30°
- D.
60°
Answer: Option D
Explanation :
Workspace:
Using the formula tan = find the value of 22.5°.
- A.
- 1
- B.
+ 1
- C.
- D.
Answer: Option A
Explanation :
Given tan =
Substitute x = 45°, we get
tan = = = √2 - 1
Hence, option (a).
Workspace:
If sin θ = and θ is an acute angle, find the value of cos 3θ.
- A.
- B.
1
- C.
-1
- D.
0
Answer: Option C
Explanation :
Given, sin θ =
∴ θ = 60°
⇒ cos 3θ = cos 180° = -1.
Hence, option (c).
Workspace:
If + = Where 0 ≤ θ ≤ then the value of - is:
- A.
- B.
- C.
- D.
Answer: Option C
Explanation :
Workspace:
(tan π + θ) = ?
- A.
sec θ
- B.
cosec θ
- C.
cot θ
- D.
tan θ
Answer: Option D
Explanation :
Workspace:
If cosec² θ + cot² θ = , then what is value of cot 2θ
- A.
- B.
- C.
- D.
Answer: Option B
Explanation :
Workspace:
If tan θ + = 2, then the value of tan² θ + is _________.
- A.
-4
- B.
2
- C.
4
- D.
3
Answer: Option B
Explanation :
Workspace:
If cosec θ + cot θ = 5, then cosec θ is equal to _________.
- A.
- B.
- C.
- D.
Answer: Option C
Explanation :
Workspace:
3 sin A - 4 sin3 A = ?
- A.
cot 3A
- B.
cos 3A
- C.
sin 3A
- D.
tan 3A
Answer: Option C
Explanation :
Workspace:
The value of sin 2θ (tan θ + cot θ) is:
- A.
- B.
1
- C.
- D.
2
Answer: Option D
Explanation :
Workspace:
If sin x - 3 cos x = cos x, then the value of cot x
- A.
3 -
- B.
3 +
- C.
- D.
Answer: Option D
Explanation :
Workspace:
If tan θ + cot θ = 4, then find the value of tan2θ + cot2θ.
- A.
10
- B.
12
- C.
16
- D.
14
Answer: Option D
Explanation :
Workspace:
The value of is:
- A.
tan 3θ
- B.
cot 3θ
- C.
tan θ
- D.
cot θ
Answer: Option A
Explanation :
Workspace:
If = cos 60° + 4 cot 45° - sec 60°, then the value of x is _______.
- A.
- B.
- C.
- D.
Answer: Option B
Explanation :
Workspace:
If 6 tan A (tan A - 1) = 5 - tan A, Given that O < A < . What is the value of (sin A + cos A)?
- A.
3
- B.
- C.
5
- D.
Answer: Option B
Explanation :
Workspace:
Simplify the following expression:
cosec4 A(1 - cos4 A) - 2 cot2 A - 1
- A.
0
- B.
cos2 A
- C.
cosec2 A
- D.
1
Answer: Option A
Explanation :
Workspace:
If A = 60°, what is the value of:
?
- A.
9
- B.
10
- C.
12
- D.
7
Answer: Option A
Explanation :
Workspace:
If 3 sin2 θ + 4 cos θ - 4 = 0, 0° < θ < 90°, then the value of (cosec2 θ + cot2 θ) is
- A.
- B.
- C.
- D.
Answer: Option D
Explanation :
Workspace:
If A = 60°, what is the value of:
- A.
5
- B.
3
- C.
15
- D.
10
Answer: Option B
Explanation :
Workspace:
If sec² θ + tan² θ = 3, 0° < θ < 90°, then (cos θ + sin θ) is equal to
- A.
- B.
- C.
- D.
Answer: Option B
Explanation :
Workspace:
Find the value of the following expression:
- A.
1 +
- B.
- C.
- D.
3
Answer: Option D
Explanation :
Workspace:
If 3 sec² θ + tan θ - 7 = 0, 0° < θ < 90°, then what is the value of
- A.
10
- B.
- C.
- D.
4
Answer: Option C
Explanation :
Workspace:
If cot B = , what is the value of sec B
- A.
- B.
- C.
- D.
Answer: Option B
Explanation :
Workspace: