Simplification - SSC
Find the value of the following expression:
- A.
- B.
- C.
- D.
Answer: Option A
Explanation :
Workspace:
Find the value of the following expression:
- A.
7.06
- B.
7
- C.
7.33
- D.
6.73
Answer: Option D
Explanation :
Workspace:
Select the correct combination of mathematical signs to replace the * signs and to balance the given equation.
42*19*4*69*81*9*58
- A.
+, ×,−,+,÷,=
- B.
÷,−,×,=,×,+
- C.
−,−,=,×,÷,−
- D.
×,−,=,+,×,−
Answer: Option A
Explanation :
Workspace:
Select the correct combination of mathematical signs to replace the * signs and to balance the given equation.
40*2*15*30*5
- A.
×,−,=,+
- B.
×,=,−,−
- C.
÷,=,+,−
- D.
÷,+,=,+
Answer: Option D
Explanation :
Workspace:
Simplify the folowing expression.
+ + (6 × 6 × 6) + 3
- A.
521
- B.
64
- C.
512
- D.
256
Answer: Option C
Explanation :
Given, + + (6 × 6 × 6) + 3
= + + 216 + 6 × ×
= + 216 +
= + 216 +
= 216 +
= 216 + 296
= 512
Hence, option (c).
Workspace:
Find the value of ‘a’ using the concept of BODMAS.
42 ÷ 2 + a × 3 - 22 = 8
- A.
4
- B.
6
- C.
5
- D.
3
Answer: Option D
Explanation :
42 ÷ 2 + a × 3 - 22 = 8
⇒ 21 + 3a - 22 = 8
⇒ 3a - 1 = 8
⇒ 3a = 9
⇒ a = 3
Hence, option (d).
Workspace:
Simplify (5 × 5 × 5 × 5 × 5)5 × (5 × 5 × 5)5 ÷ 5 = (125)?.
- A.
15
- B.
21
- C.
13
- D.
14
Answer: Option C
Explanation :
(5 × 5 × 5 × 5 × 5)5 × (5 × 5 × 5)5 ÷ 5
= (55)5 × (53)5 ÷ 5
= 55×5 × 53×5 ÷ 5
= 525 × 515 ÷ 5
= 525+15 ÷ 5 = 540 ÷ 5
= 540-1 = 539
= 53×13 = (53)13
= (125)13
Hence, option (c).
Workspace:
Which two numbers, from amongst the given options, should be interchanged to make the given equation correct?
(132 ÷ 12) + (6 × 11) + 18 - (64 ÷ 16) × 8 = 70
- A.
11 and 8
- B.
12 and 6
- C.
8 and 6
- D.
12 and 11
Answer: Option D
Explanation :
Workspace:
If 2z = x + y, then the value of + is:
- A.
0
- B.
1
- C.
2
- D.
5
Answer: Option C
Explanation :
Given, 2z = x + y
⇒ z - x = y - z
Now + = +
⇒ + = -
⇒ + =
⇒ + = = 2
∴ + = 2
Alternately,
Assume x = 2 and y = 4, hence z = 3
Now, + = + = -2 + 4 = 2
Hence, option (c).
Workspace:
If P varies directly as Q, and P = 227 when Q = 232, find P when Q = 116.
- A.
120.5
- B.
113.5
- C.
132
- D.
118
Answer: Option B
Explanation :
P varies directly as Q, hence ratio of P and Q will be constant.
∴ 227/232 = P/116
⇒ P = 227/232 × 116 = 113.5
Hence, option (b).
Workspace:
If x - y = 25 and xy = 78, then what is the value of x2 + y2?
- A.
625
- B.
781
- C.
103
- D.
756
Answer: Option B
Explanation :
Given, x - y = 25
Squaring both sides, we get
x2 + y2 - 2xy = 625
⇒ x2 + y2 - 156 = 625 [since xy = 78]
⇒ x2 + y2 = 625 + 156 = 781
Hence, option (b).
Workspace:
Simplify the following expression.
4 ÷ [ 2 + 2 ÷ {2 + 2 ÷ (2 + )}]
- A.
- B.
- C.
- D.
Answer: Option C
Explanation :
Workspace:
If (ab + bc + ca) = 0, then what is the value of ( + + )?
- A.
2
- B.
0
- C.
1
- D.
a + b + c
Answer: Option B
Explanation :
Workspace:
Which of the following options is NOT divisible by 18?
- A.
571032
- B.
732546
- C.
245798
- D.
459018
Answer: Option C
Explanation :
Option (c): 245798 is not divisible by 3 hence it will not be divisible by 18 also.
Hence, option (c).
Workspace:
What should be subtracted from 246837 to make it divisible by 13 ?
- A.
5
- B.
6
- C.
3
- D.
4
Answer: Option B
Explanation :
Workspace:
The fourth proportional to 14,21,28 is:
- A.
46
- B.
40
- C.
42
- D.
44
Answer: Option C
Explanation :
Workspace:
If x = + y = - then value of 7x² - 50xy + 7y² =
- A.
344
- B.
704
- C.
1360
- D.
386
Answer: Option A
Explanation :
Workspace:
If 9 × 4 of 3 ÷ 2 - 5 × Q + 2 × 3 = 10, then find the value of Q.
- A.
10
- B.
0.2
- C.
0.1
- D.
5
Answer: Option A
Explanation :
Workspace:
The expression x4 - 8x² + m will be a perfect square when the value of m is:
- A.
2
- B.
16
- C.
8
- D.
4
Answer: Option B
Explanation :
Workspace:
If a + b = and a - b = , then find the value of 8ab (a² + b²) - (a - b)²
- A.
19
- B.
23
- C.
27
- D.
21
Answer: Option A
Explanation :
Workspace:
96 ÷ 48 × + 5² - (1 + 2 + 3 + 4) = ?
- A.
64
- B.
44
- C.
34
- D.
54
Answer: Option B
Explanation :
Workspace:
If x + y = 13, then (x - 8)3 + (y - 5)3 is:
- A.
2197
- B.
0
- C.
169
- D.
13
Answer: Option B
Explanation :
Workspace:
Simplify:
÷
- A.
- B.
- C.
- D.
Answer: Option C
Explanation :
Workspace:
If (a - 1) 2 + (b + 2) 2 + (c - 1) 2 = 0 , then the value of a2 + b2 + c2 is:
- A.
6
- B.
0
- C.
2
- D.
1
Answer: Option A
Explanation :
Workspace:
The value of is equal to:
- A.
ab + bc + ca
- B.
0
- C.
1
- D.
Answer: Option D
Explanation :
Workspace: