Simple Equation - SSC
Simplify the following expression.
(2.19)2 + 2(2.19) (3.81) + (3.81)2
- A.
216
- B.
12
- C.
36
- D.
6
Answer: Option C
Explanation :
Workspace:
If x - 2y = 3 and 2xy = 5, then find the value of (x + 2y)2.
- A.
29
- B.
27
- C.
30
- D.
28
Answer: Option A
Explanation :
Workspace:
If 8x² + 9x + 8 = 0, then the value of x³ + is:
- A.
- B.
- C.
- D.
Answer: Option C
Explanation :
Workspace:
If X - = 11, what is the value of
- A.
14159
- B.
14163
- C.
15127
- D.
15131
Answer: Option C
Explanation :
Workspace:
Simplify:
9 - [10 - {20 - (15 - )}].
- A.
10
- B.
8
- C.
7
- D.
12
Answer: Option A
Explanation :
Simplify:
9 - [10 - {20 - (15 - )}].
= 9 - [10 - {20 - (15 - 6)}]
= 9 - [10 - {20 - 9}]
= 9 - [10 - 11]
= 9 - [-1]
= 10
Hence, option (a).
Workspace:
Simplify the expression:
(36p2 + 49q2) (6p + 7q) (6p - 7q)
- A.
1296p4 + 2401q4
- B.
36p4 - 49q4
- C.
1296p4 - 2401q4
- D.
36p4 + 49q4
Answer: Option C
Explanation :
Workspace:
If x + y = 14, then the value of x3 + y3 + 42xy is:
- A.
2744
- B.
2644
- C.
2742
- D.
2714
Answer: Option A
Explanation :
Workspace:
If 8 × 3 + 27y3 + 64z3 = 72xyz, then the relation between x, y and z can be:
- A.
2x + 3y = −4z
- B.
2x + y + z = 0
- C.
2x - 3y + 4z = 0
- D.
2x + 3y = 4z
Answer: Option A
Explanation :
Workspace:
If x2 + 4y2 = 40, xy = 6$$, and x > 2y, then the value of x - 2y is:
- A.
1
- B.
3
- C.
2
- D.
4
Answer: Option D
Explanation :
Workspace:
The value of x2 + y2, when x = 1, y = 2 is ________.
- A.
4
- B.
5
- C.
2
- D.
1
Answer: Option B
Explanation :
Workspace:
9 ÷ [5 + 7 ÷ {9 + 9 ÷ (9 + 9 ÷ 4)}] = ?
- A.
- B.
- C.
- D.
Answer: Option B
Explanation :
Given: 9 ÷ [5 + 7 ÷ {9 + 9 ÷ (9 + 9 ÷ 4)}]
=
= =
= =
=
Hence, option (b).
Workspace:
If = , then the value of
- A.
88
- B.
100
- C.
120
- D.
60
Answer: Option C
Explanation :
Workspace:
If 2a + 5b = 12 and ab = 3, find the value of 4a2 + 25b2.
- A.
64
- B.
44
- C.
84
- D.
24
Answer: Option C
Explanation :
Workspace:
If a, b + c = 10 and ab + bc + ca = 30, then the value of a2 + b2 + c2 is:
- A.
40
- B.
38
- C.
30
- D.
25
Answer: Option A
Explanation :
Workspace:
If x2 = b - ax and x3 (x3 + c) = d, then which of the following can be the values of c and d?
- A.
c = a3 - 3ab and d = b3
- B.
c = -a3 - 3ab and d = b3
- C.
c = a3 + 3ab and d = b3
- D.
c = a3 + 3ab and d = -b3
Answer: Option C
Explanation :
Workspace:
If a + b - c = 5 and ab - be - ac = 10, then find the value of a2 + b2 + c2 .
- A.
40
- B.
5
- C.
45
- D.
15
Answer: Option B
Explanation :
Workspace:
If x + y + 3 = 0 , then find the value of x3 + y3 - 9xy + 9.
- A.
18
- B.
36
- C.
-36
- D.
-18
Answer: Option D
Explanation :
Workspace:
If (x + 6y) = 8, and xy = 2, where x > O, what is the value of (x3 + 216y3)?
- A.
476
- B.
288
- C.
224
- D.
368
Answer: Option C
Explanation :
Workspace:
If a + b = 8 and a − b = 6, then find the value of ‘ab’.
- A.
6
- B.
8
- C.
5
- D.
7
Answer: Option D
Explanation :
Workspace:
The area of a square is 4x2 - 12x + 9. Which of the following will be the side of the square?
- A.
(3x + 2)
- B.
(2x - 3)
- C.
(2x + 3)
- D.
(3x - 2)
Answer: Option B
Explanation :
Workspace:
Expand x2 + 2x + 3 about x = -2.
- A.
(x − 2)2 − 2 (x + 2) + 3
- B.
(x + 2)2 − 2 (x + 2) + 3
- C.
(x + 2)2 + 2 (x + 2) + 3
- D.
(x − 2)2 − 2 (x − 2) − 3
Answer: Option C
Explanation :
Workspace:
If a + b = 12 and ab = 35, find the value of a4 + b4 - 103?
- A.
1226
- B.
2026
- C.
2226
- D.
2126
Answer: Option B
Explanation :
Workspace:
If 2a + b = 10, 2ab = 9, and 2a > b, then find the value of 2a - b.
- A.
12
- B.
6
- C.
8
- D.
10
Answer: Option C
Explanation :
Workspace:
The identity 4(z + 7) (2z - 1) = Az2 +Bz + C holds for all real values of z. Find the value of A2 - B - C.
- A.
-16
- B.
40
- C.
36
- D.
16
Answer: Option B
Explanation :
Workspace:
If x = 9, then the value of x5 − 10x4 + 10x3 − 10x2 + 10x − 1 is:
- A.
10
- B.
8
- C.
9
- D.
1
Answer: Option B
Explanation :
Workspace: