Please submit your concern

Explanation:

Given, f(n) = 1 + 2 + 3 + ... + (n+1) = (n+1)(n+2)2

Now,

1f(k)k=1k=n = 1f(1) + 1f(2) + 1f(3) + ... + 1f(n)

22×3 + 23×4 + 24×5 + ... + 2(n)×(n+1) + 2(n+1)×(n+2)

212×3+13×4+14×5+...+1n×(n+1)+1(n+1)×(n+2)

212-13+13-14+14-15+...+1n-1n+1+1(n+1)-1n+2

212-1n+2

2n2(n+2)

n(n+2)

Now, this should be greater than 99/100

⇒ n(n+2) > 99100

⇒ 100n > 99n +198

⇒ n > 198

∴ Least possible integer value of n = 199.

Hence, 199.

Feedback

Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.


© 2024 | All Rights Reserved | Apti4All