Discussion

Explanation:

Given, log2[log3(log4a)] = log3[log4(log2b)] = log4[log2(log3c)] = 0

⇒ log2[log3(log4a)] = 0
⇒ log3(log4a) = 20 = 1
⇒ log4a = 31 = 3
⇒ a = 43 = 64

Also, log3[log4(log2b)] = 0
⇒ log4(log2b) = 30 = 1
⇒ log2b = 41 = 4
⇒ b = 24 = 16

Also, log4[log2(log3c)] = 0
⇒ log2(log3c) = 40 = 1
⇒ log3c = 21 = 2
⇒ c = 32 = 9

∴ a + b + c = 64 + 16 + 9 = 89.

Hence, option (c).

» Your doubt will be displayed only after approval.


Doubts


Feedback

Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.


© 2024 | All Rights Reserved | Apti4All