Discussion

Explanation:

Case 1: x > 3
⇒ f(x - 3) = max(x - 3, 0) = x - 3
⇒ f(x + 1) = max(x + 1, 0) = x + 1
Given, f(x - 3) + 2f(x + 1) = 8
⇒ x - 3 + 2(x + 1) = 8
⇒ 3x = 9
⇒ x = 3

Case 2: -1 < x ≤ 3
⇒ f(x - 3) = max(x - 3, 0) = 0
⇒ f(x + 1) = max(x + 1, 0) = x + 1
Given, f(x - 3) + 2f(x + 1) = 8
⇒ 0 + 2(x + 1) = 8
⇒ 2x = 6
⇒ x = 3

Case 3: x < -1
⇒ f(x - 3) = max(x - 3, 0) = 0
⇒ f(x + 1) = max(x + 1, 0) = 0
Given, f(x - 3) + 2f(x + 1) = 8
⇒ 0 + 0 = 8
Not possible

∴ x = 3 is the only value that satisfies the given function.

Hence, 3.

» Your doubt will be displayed only after approval.


Doubts


Feedback

Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.


© 2024 | All Rights Reserved | Apti4All