If f(n) = 1 + 2 + 3 + ... + (n + 1) and g(n) = ∑1f(k)k=1k=n, then the least value of n for which g(n) exceeds the value of 99100 is
Explanation:
Given, f(n) = 1 + 2 + 3 + ... + (n+1) = (n+1)(n+2)2
Now,
∑1f(k)k=1k=n = 1f(1) + 1f(2) + 1f(3) + ... + 1f(n)
= 22×3 + 23×4 + 24×5 + ... + 2(n)×(n+1) + 2(n+1)×(n+2)
= 212×3+13×4+14×5+...+1n×(n+1)+1(n+1)×(n+2)
= 212-13+13-14+14-15+...+1n-1n+1+1(n+1)-1n+2
= 212-1n+2
= 2n2(n+2)
= n(n+2)
Now, this should be greater than 99/100
⇒ n(n+2) > 99100
⇒ 100n > 99n +198
⇒ n > 198
∴ Least possible integer value of n = 199.
Hence, 199.
» Your doubt will be displayed only after approval.
Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.