The numbers −16, 2x+3 − 22x−1 − 16, 22x−1 + 16 are in an arithmetic progression. Then x equals ________.
Explanation:
−16, 2x+3 − 22x−1 − 16, 22x−1 + 16 are in AP
If a, b and c are in AP ⇒ 2b = a + c
∴ 2 × (2x+3 − 22x−1 − 16) = -16 + 22x−1 + 16
⇒ 2x+4 − 22x − 32) = 22x−1
⇒ 16 × 2x − 22x − 32 = 22x/2
⇒ 32 × 2x − 2 × 22x − 64 = 22x
Take 2x = a and 22x = a2
⇒ 32a − 2a2 − 64 = a2
⇒ 3a2 - 32a + 64 = 0
⇒ 3a2 - 8a - 24a + 64 = 0
⇒ (3a - 8)(a - 8) = 0
⇒ a = 8/3 or 8
⇒ 2x = 8/3 or 8
[8/3 is rejected as 2x cannot be a fraction]
⇒ 2x = 8 = 23
⇒ x = 3
Hence, 3.
» Your doubt will be displayed only after approval.
Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.