Please submit your concern

Explanation:

​​​​​​​

AB = 4

Based on the figure, area of triangel ABC = 1/2 × AB × |y| = 2|y|

∴ 2|y| must be an integer.

Hence, y can be

Case 1: y = ± 1/2
⇒ x2 + (1/2)2 = 4 
⇒ x2 = 15/4
⇒ x = ± √15/2
∴ 4 points i.e, (√15/2 ,1/2), (-√15/2 ,1/2), (√15/2 ,-1/2) & (-√15/2 ,-1/2)

Case 2: y = ± 1
⇒ x2 + (1)2 = 4 
⇒ x2 = 3
⇒ x = ± √3
∴ 4 points i.e, (√3 ,1), (-√3 ,1), (√3 ,-1) & (-√3 ,-1)

Case 1: y = ± 3/2
⇒ x2 + (3/2)2 = 4 
⇒ x2 = 7/4
⇒ x = ± √7/2
∴ 4 points i.e, (√7/2 ,3/2), (-√7/2 ,3/2), (√7/2 ,-3/2) & (-√7/2 ,-3/2)

Case 1: y = ± 2
⇒ x2 + (2)2 = 4 
⇒ x2 = 0
⇒ x = 0
∴ 2 points i.e, (0 ,2) & (0 ,-2)

∴ Total 4 + 4 + 4 + 2 = 14 points

Hence, 14.

Feedback

Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.


© 2024 | All Rights Reserved | Apti4All