Question: In the xy-plane let A = (-2,0), B = (2,0). Define the set S as the collection of all points C on the circle x2 + y2 = 4 such that the area of the triangle ABC is an integer. The number of points in the set S is
Explanation:
AB = 4
Based on the figure, area of triangel ABC = 1/2 × AB × |y| = 2|y|
∴ 2|y| must be an integer.
Hence, y can be
Case 1 : y = ± 1/2
⇒ x2 + (1/2)2 = 4
⇒ x2 = 15/4
⇒ x = ± √15/2
∴ 4 points i.e, (√15/2 ,1/2), (-√15/2 ,1/2), (√15/2 ,-1/2) & (-√15/2 ,-1/2)
Case 2 : y = ± 1
⇒ x2 + (1)2 = 4
⇒ x2 = 3
⇒ x = ± √3
∴ 4 points i.e, (√3 ,1), (-√3 ,1), (√3 ,-1) & (-√3 ,-1)
Case 1 : y = ± 3/2
⇒ x2 + (3/2)2 = 4
⇒ x2 = 7/4
⇒ x = ± √7/2
∴ 4 points i.e, (√7/2 ,3/2), (-√7/2 ,3/2), (√7/2 ,-3/2) & (-√7/2 ,-3/2)
Case 1 : y = ± 2
⇒ x2 + (2)2 = 4
⇒ x2 = 0
⇒ x = 0
∴ 2 points i.e, (0 ,2) & (0 ,-2)
∴ Total 4 + 4 + 4 + 2 = 14 points
Hence, 14.