Sin α + Sin β = 23 and Cos α + Cos β = 13, then the value of 20 cosα-β22 is _______.
Explanation:
Sin α + Sin β = 23 ...(1) and Cos α + Cos β = 13 ...(2),
Squaring both the equations and adding them we get.
⇒ Sin2 α + Sin2 β + 2 × Sin α × Sin β + Cos2 α + Cos2 β + 2 × Cos α × Cos β = 23 + 13
⇒ Sin2 α + Cos2 α + Sin2 β + Cos2 β + 2 × Sin α × Sin β + 2 × Cos α × Cos β = 1
⇒ 1 + 1 + 2 × cos (α - β) = 1
⇒ cos (α - β) = - 1/2
⇒ 2 × cosα-β22 - 1 = - 1/2
⇒ cosα-β22 = 1/4
∴ 202 × cosα-β22 = 400
⇒ 20 cosα-β22 = 100.
Hence, 100.
» Your doubt will be displayed only after approval.
Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.