If A = 100001010, then the absolute value of the determinant of (A9 + A6 + A3 + A) is __________.
Explanation:
Given, A = 100001010
Now, A × A = 100001010 × 100001010 = 1×1+0×0+0×01×0+0×0+0×11×0+0×1+0×00×1+0×0+1×00×0+0×0+1×10×0+0×1+1×00×1+1×0+0×00×0+1×0+0×10×0+1×1+0×0 = 100010001 = I
⇒ A3 = A2 × A = I × A = A
⇒ A6 = A3 × A3 = A × A = I
⇒ A9 = A3 × A3 × A3 = A × A × A = A2 × A = I × A = A
Now, (A9 + A6 + A3 + A)
= A + I + A + A + A
= 3A + I
= 300003030 + 100010001
= 400013031
∴ The absolute value of the determinant of (A9 + A6 + A3 + A) = absolute value of 400013031
= |4 × (1 × 1 - 3 × 3)| = |4 × (1 - 9)| = 32.
Hence, 32.
» Your doubt will be displayed only after approval.
Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.