Discussion

Explanation:

(a + b) α (a - b)

⇒ (a + b) = k(a - b), when k is a constant

⇒ (a + b)/(a - b) = k

Applying componendo and dividendo,

a/b = (k + 1)/(k - 1) = x (say)

Squaring both sides; a²/b² = x²

Applying componendo and dividendo

a2+b2a2-b2=x2+1x2-1

⇒ a2+b2=(a2-b2)×x2+1x2-1

⇒ (a+ b2) = (a2 - b2) × (a constant, let's say t)

∴ (a+ b2) = t × (a2 - b2)

 

Also, a2+b2ab=x2b2+b2xb×b=b2(x2+1)b2x = 1+x2x = constant

∴ (a+ b2) α ab

∴ Both (A) and (B) are true.

Hence, option (c).

» Your doubt will be displayed only after approval.


Doubts


Feedback

Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.


© 2024 | All Rights Reserved | Apti4All