Question: The sum of the series is:
1 1 . 2 . 3 + 1 3 . 4 . 5 + 1 5 . 6 . 7 + ....
Explanation:
S = ∑ i = 0 ∞ 1 ( 2 i + 1 ) ( 2 i + 2 ) ( 2 i + 3 )
= 1 2 ∑ i = 0 ∞ ( 2 i + 3 ) - ( 2 i + 1 ) ( 2 i + 1 ) ( 2 i + 2 ) ( 2 i + 3 )
= 1 2 ∑ i = 0 ∞ 1 ( 2 i + 1 ) ( 2 i + 2 ) - 1 ( 2 i + 2 ) ( 2 i + 3 )
= 1 2 ∑ i = 0 ∞ 1 2 i + 1 - 2 2 i + 2 + 1 2 i + 3
= 1 2 ∑ i = 0 ∞ 1 2 i + 1 + 1 2 i + 3 - ∑ i = 0 ∞ 1 2 i + 2 ...(i)
Now, 1 2 ∑ i = 0 ∞ 1 2 i + 1 + 1 2 i + 3 = 1 2 1 1 + 1 3 + 1 3 + 1 5 + 1 5 + 1 7 + 1 7 + . . .
= 1 2 1 + 2 1 3 + 1 5 + 1 7 + . . .
= 1 2 2 1 1 + 1 3 + 1 5 + 1 7 + . . . - 1
= 1 1 + 1 3 + 1 5 + 1 7 + . . . - 1 2
= -1 2 + ∑ i = 0 ∞ 1 2 i + 1 ...(ii)
From (i) and (ii), we get,
S = -1 2 + ∑ i = 0 ∞ 1 2 i + 1 - 1 2 i + 2
= -1 2 1 1 - 1 2 + 1 3 - 1 4 + 1 5 - 1 6 + . . .
= -1 2 + ∑ i = 0 ∞ - 1 ( i - 1 ) 1 i ...(iii)
Now, we know that,
loge (1 + x) = x - 1 2 x 2 + 1 3 x 3 - 1 4 x 4 + ...
= ∑ i = 0 ∞ (-1)n- 1 1 n x n
Putting x = 1 in the above equation, we get,
loge 2 = ∑ i = 0 ∞ - 1 ( i - 1 ) 1 i ...(iv)
From (iii) and (iv), we get,
S = loge 2 - 1 2
Hence, option (d).
Alternatively,
You can also solve this question using options.
1 1 . 2 . 3 + 1 3 . 4 . 5 + 1 5 . 6 . 7 + ... = 1 6 + 1 60 + 1 210 + ...
= 0.167 + 0.0167 + 0.0047 + …
< 0.2 but always positive
So, value of S will always be less than 0.2.
Now, we will consider all the given options one by one.
Consider option 1.
e 2 – 1 = (2.718)2 – 1 > 0.2
So, option 1 can be eliminated.
Consider option 2.
loge 2 – 1 = 0.693 – 1 < 0
So, option 2 can be eliminated.
Consider option 3.
2log10 2 – 1 = 2(0.3010) – 1 < 0
So, option 3 can be eliminated.
So, the correct answer will be option 4.
Hence, option (d).