Please submit your concern

Explanation:

Given, 12log3(2x-9)log34 and log5(2x+172)log54 are in arithmetic progression,

⇒ 1/2, log(2x - 9) and log4 (2x + 17/2) are in AP

⇒ 2 × log4 (2x - 9) = 1/2 + log4 (2x + 17/2)

⇒ log4 (2x - 9)2 = log4 2 + log4 (2x + 17/2)

⇒ log4 (2x - 9)2 = log4 2 + log4 (2x + 17/2)

⇒ log4 (2x - 9)2 = log4 2 × (2x + 17/2)

⇒ (2x - 9)2 = 2 × (2x + 17/2)

⇒ (a - 9)2 = 2a + 17    [Assuming 2x = a]

⇒ a2 - 18a + 81 = 2a + 17

⇒ a2 - 20a + 64 = 0

⇒ (a - 16)(a - 4) = 0

⇒ a = 2x = 16   [4 is rejected as (a - 9) cannot be negative]

Now the first term of the AP = 1/2 and

second term of the AP = log(2x - 9) = log(16 - 9) = log7

Common difference = log7 - 1/2 = log7 - log2 = log7/2

Hence, option (a).

 

Feedback

Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.


© 2024 | All Rights Reserved | Apti4All