Let a1, a2,.......a3n be an arithmetic progression with a1 = 3 and a2 = 7. If a1 + a2 + ......+ a3n = 1830, then what is the smallest positive integer m such that m(a1 + a2 + ..... + an) > 1830?
Explanation:
a1 = 3, a2 = 7, ….. an = 3 + (n - 1) × 4 = 4n – 1, a3n = 3 + (3n – 1) × 4 = 12n - 1
a1 + a2 + a3 + … + a3n = 3n2(12n-1+3) = 1830 ⇒ n(6n + 1) = 610 ⇒ 6n + n – 610 = 0 ⇒ (6n + 61)(n - 10) = 0 ⇒ n - 10 = 0
Now a10 = 3 + (10 - 1) × 4 = 39
∴ a1 + a2 + a3 + … + a10 = 3 + 7 + … + 39 = 102(3+39) = 210.
210 × m > 1830
⇒ n > 1830/210 = 8.7.
The minimum integral value of m is 9.
Hence, option (b).
Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.