In ∆MNL, line NP bisects the angle MNL. If NP : NL= 2 : 3 and angle MNL = 120°. Then NP : NL: MN is:
Explanation:
Applying cosine rule in ∆NPL, we get; Cos60 = 1/2 = [NP2 + NL2 − PL2]/(2 × NP × NL) ∴ 1/2 = [(2x)2 + (3x)2 − PL2]/(2 × 2x × 3x) ∴ PL = x√7. Using angle bisector theorem, MN/NL = MP/PL So, MN/3x = MP/x√7 ∴ MN = MP × (3/√7) ...(I) Applying cosine rule in ∆MNP, we get; Cos60 = 1/2 = [MN2 + NP2 − MP2]/(2 × MN × NP) Let MN = a, so using (I) MP = (√7/3) a or MP2 = (7/9)a2. ∴ 1/2 = [a2 + 4x2− (7/9)a2 ]/(2 × a × 2x) ∴ a2 − 9ax + 18x2 = 0 ∴ a = 6x or 3x. If a = 3x, then MN = NL = 3x, so ∆MNL becomes isosceles and hence ∠NPL = 90°, which means that NL2 = NP2 + PL2. NL2 = 9x2 and NP2 + PL2 = 4x2 + (x2/7) = (29/7)x2 ≠ 9x2. Hence a ≠ 3x. ∴ a = 6x. NP : NL: MN = 2x : 3x : 6x = 2 : 3 : 6. Hence option (b). Note: We can use the direct formula for the length of the angle bisector L. Consider the triangle drawn below
L = (2abCosQ)/(a + b)
So, 2x = (2 × MN × 3x × Cos60)/(MN + 3x)
Solving, we get; MN = 6x.
» Your doubt will be displayed only after approval.
Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.