Discussion

Explanation:

Let the sum of all the terms of the series = S.

∴ S = T1 + (-75)
⇒ T1 = S + 75

Similarly, S = 0 + Tn 
⇒ Tn = S

T13 - T9 = - 20
⇒ (T1 + 12d) - (T1 + 8d) = - 20
⇒ 4d = - 20
⇒ d = - 5

Now, Tn = T1 + (n - 1)d
⇒ S = (S + 75) + -5(n - 1)
⇒ -75 = -5(n - 1)
⇒ 15 = (n - 1)
⇒ n = 16

Now, S = n/2 × [T1 + Tn]
⇒ S = 16/2 × [S + 75 + S]
⇒ S = 8[2S + 75]
⇒ S = 16S + 8 × 75
⇒ 15S = - 8 × 75
⇒ S = -40

Finally, T1 = S + 75 = - 40 + 75 = 35

Hence, option (b).

» Your doubt will be displayed only after approval.


Doubts


Feedback

Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.


© 2024 | All Rights Reserved | Apti4All