Discussion

Explanation:

Since ∠ABC = 30° and ∆DBE is an isosceles triangle, ∠BDE = 120°

Applying the cosine rule in △BDE.

BE2 = BD2 + DE2 - 2 × BD × DE cos(120)

1 = 2BD2 + BD2                [since BD = DE]

BD = 13

Thus, BD = DE = EF = FG = GH = HI = IJ = JC = 13

Area of △BDE = 12 × BD × DE × sin(120) = 12 × 13 × 13 × 32 = 413

The total area of all smaller isosceles triangles = 4 × 413 = 13 m2

∠DEF = ∠FGH = ∠HIJ = 120°
Thus, the total area of circular arcs = π × (13)2π3m2

Now, side BC = BE + EG + GI + IC = 4m

Using the cosine rule in △ABC, we get AB = AC = 43.

Thus, Area of △ABC = 12 × 43 × 43 × sin(120) = 43m2

Thus, the area of the shaded region = Area of △ABC - Area of smaller isosceles triangles - Area of the circular sections

43 - 13 - π3 = 3 - π3

Hence, the answer is option C.

» Your doubt will be displayed only after approval.


Doubts


Feedback

Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.


© 2024 | All Rights Reserved | Apti4All