Consider an + 1 = 11+1an for n = 1, 2, ...., 2008, 2009 where a1 = 1. Find the value of a1 a2 + a2 a3 + a3 a4 + ... + a2008 a2009
Explanation:
Given, an + 1 = 11+1an
⇒ a1 = 1
⇒ a2 = 11+1a1 = 12
⇒ a3 = 11+1a2 = 13 ... ⇒ an = 1n
Now: a1 a2 + a2 a3 + a3 a4 + ... + a2008 a2009 = 11×2 + 12×3 + 13×4 + ... + 12008×2009
= 11-12 + 12-13 + 13-14 + ... + 12008-12009
= 11-12009 = 20082009
Hence, option (c).
» Your doubt will be displayed only after approval.
Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.