Find the value of:
sin615°+sin675°+6sin215°sin275°sin415°+sin475°+5sin215°sin275°
Explanation:
Let sin215° = a and sin275° = b
∴ sin615°+sin675°+6sin215°sin275°sin415°+sin475°+5sin215°sin275° = a3+b3+6aba2+b2+5ab
Now, a3 + b3 = (a + b)3 - 3ab(a + b), and a2 + b2 = (a + b)2 - 2ab
∴ sin615°+sin675°+6sin215°sin275°sin415°+sin475°+5sin215°sin275° = (a+b)3-3ab(a+b)+6ab(a+b)2-2ab+5ab
Now, a + b = sin215° + sin275° = sin215° + cos215° = 1 [β΅ Sinπ = Cos(90 - π)]
∴ sin615°+sin675°+6sin215°sin275°sin415°+sin475°+5sin215°sin275° = 1-3ab+6ab1-2ab+5ab = 1+3ab1+3ab = 1
Hence, option (c).
Β» Your doubt will be displayed only after approval.
Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.