Discussion

Explanation:

Given, 4-log2n3-log4n < 0

Case 1: 4 – log2n < 0 and 3 – log4n > 0
⇒ log2n > 4 and log4n < 3
⇒ n > 16 and n < 64
∴ integral values of n can be 17, 18, …, 63 i.e., 47 values.

Case 2: 4 – log2n > 0 and 3 – log4n < 0
⇒ log2n < 4 and log4n > 3
⇒ n < 16 and n > 64
∴ No integral values of n is possible.

Hence, 47.

» Your doubt will be displayed only after approval.


Doubts


Feedback

Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.


© 2024 | All Rights Reserved | Apti4All