Discussion

Explanation:

Let P = (1 – x2 + x3)(1 + x)10

The terms containing x7x5 and x4 in the expansion of (1 + x)10 give terms containing x7 in the expression of P.

The rth term in the Binomial Expansion of (a + b)n is given by

Tr = nCr – 1 a(n – r – 1)b(– 1)

∴ The term containing x7 is given by

T8 = 10C7 x7

The term containing x5 is given by

T6 = 10C5x5

The term containing xis given by

T5 = 10C4x4

∴ P = (1 – x2 + x3)(10C7 x7 + … + 10C5x5 + 10C4x4 + … )

∴ The coefficient of the term containing x7 = 10C7 – 10C5 + 10C4

= 120 – 252 + 210 = 78

Hence, option (b).

» Your doubt will be displayed only after approval.


Doubts


Feedback

Help us build a Free and Comprehensive Preparation portal for various competitive exams by providing us your valuable feedback about Apti4All and how it can be improved.


© 2024 | All Rights Reserved | Apti4All